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Abstract— Tetris, a widely popular puzzle game, presents a 

computational challenge classified as NP-hard, making it a 

formidable problem for exact algorithms. This paper explores the 

application of heuristic algorithms to efficiently manage the 

complexity inherent in Tetris. We propose and implement 

various heuristic strategies aimed at optimizing gameplay by 

minimizing gaps and maximizing completed rows. The 

effectiveness of these heuristics is evaluated through extensive 

simulations and performance metrics, demonstrating significant 

improvements in decision-making speed and game performance. 

The result suggest that heuristic approaches offer a practical 

solution to handling the computational demands of Tetris, 

providing insights that can be extended to other NP-hard 

problems in combinatorial optimization.  
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I.  INTRODUCTION (HEADING 1) 

Tetris, a globally popular puzzle game, presents significant 
computational challenges due to its NP-hard classification. The 
game's complexity comes from the need to place randomly 
shaped tetrominoes in an optimal way to clear lines and prevent 
the stack from reaching the top of the playing field. With the 
large number of possible game states and the exponential 
growth of the search space with each new piece, solving Tetris 
optimally in real-time is computationally infeasible with exact 
algorithms. 

To tackle this problem, heuristic approaches such as greedy 
algorithms and branch and bound methods can be used. Greedy 
algorithms make locally optimal decisions at each step, aiming 
for immediate benefits. These algorithms are efficient and easy 
to implement but may not always lead to the best overall 
solution because they focus only on short-term gains. 

Branch and bound algorithms, on the other hand, explore 
all possible solutions more thoroughly by systematically 
branching out possible moves and using bounds to prune 
branches that are unlikely to lead to an optimal solution. This 
method balances the need to explore different possibilities with 
the need to find good solutions quickly. 

In this paper, I explore the use of both greedy algorithms and 

branch and bound methods to address the NP-hard complexity 

of Tetris. I propose and implement various heuristic strategies 

to improve the performance of these algorithms, focusing on 

minimizing gaps, reducing the height of columns, and 

maximizing the number of lines cleared. The effectiveness of 

these strategies is evaluated through extensive simulations, 

demonstrating their strengths and weaknesses in handling the 

computational demands of Tetris. 

By combining the strengths of greedy algorithms and 

branch and bound techniques, this paper aims to offer practical 

solutions for the Tetris problem. 

II. FUNDAMENTAL THEOREM 

A. Heuristic 

In problem-solving, a heuristic is a technique or strategy 
that uses practical methods to find solutions, especially when 
faced with complex or difficult problems. Heuristics are often 
employed in situations where finding an optimal solution is 
computationally infeasible within a reasonable amount of time. 
In the context of Tetris, heuristics guide the decision-making 
process by providing rules of thumb to optimize gameplay. 
These rules prioritize certain actions, such as minimizing gaps, 
reducing the height of the stack, or maximizing the number of 
lines cleared, without guaranteeing an optimal solution. This 
heuristic approach will affect the behavior of the algorithm 
using it.  

B. Greedy Algorithm 

Greedy algorithms are a class of heuristic algorithms that 
make locally optimal choices at each step with the hope of 
finding a global optimum.  

The Greedy Algorithm uses several elements to determine 
its steps: 

1. Candidate set, C: Contains options that can be chosen 
at each step. 

2. Solution set, S: Contains options that have been 
chosen. 

3. Solution function: Determines whether the chosen 
option provides a solution. 
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4. Selection function: Selects options based on a specific 
strategy. 

5. Feasibility function: Checks whether the chosen 
option is suitable for inclusion in the solution set. 

6. Objective function: Maximizes or minimizes the 
outcome. 

At each iteration, the solution found is the best at the local 
level. In the end, if any, the global solution will be found. 

The greedy algorithm in Tetris uses heuristics to determine 
the selection function to make locally optimal decisions at each 
step. These decisions are influenced by heuristic functions that 
prioritize immediate benefits, such as clearing the most lines or 
minimizing the height of the tallest column. While the greedy 
algorithm is efficient and straightforward, its reliance on 
heuristics may lead to suboptimal solutions in the long run. 

 

C. Branch and Bound Algorithm 

 Branch and bound is an algorithmic technique used for 
solving combinatorial optimization problems. This method 
systematically explores the solution space by branching into 
subproblems and using bounds to eliminate suboptimal 
branches.  

The Branch and Bound Algorithm (BnB) is a versatile 
algorithm used to solve optimization problems. These problems 
involve finding the minimum or maximum value of an 
objective function while adhering to certain constraints. 
Typically, problems tackled using the Branch and Bound 
Algorithm are represented as a graph or tree structure. The 
process of searching for the optimal value is conducted using a 
state space tree, where each node carries a specific weight. 

In essence, the Branch and Bound Algorithm consists of 
two main components: 

a. The algorithm generates child nodes in the state space 
tree from the node being examined. Each child node inherits 
certain variations from its parent node and also carries a weight 
representing the cost required to reach the child node from the 
original node. This process is known as branching. 

b. The algorithm prunes branches or nodes deemed to no 
longer lead to the desired solution. This pruning is achieved 
using a bounding function, hence the term "bounding." 

The Branch and Bound Algorithm combines elements from 
Breadth First Search (BFS) and Least Cost Search. BFS is a 
search algorithm in the state space tree that generates child 
nodes in a "breadth-first" manner, exploring all neighboring 
nodes in a sequential order. BFS uses a queue data structure to 
store nodes being generated with the First In First Out (FIFO) 
principle. Least Cost Search involves generating child nodes 
from a parent node with the smallest weight in the state space 
tree. 

In the Branch and Bound Algorithm, node generation 
follows specific rules, with the best-first rule being commonly 
used. Each generated node is assigned a cost or weight, 
denoted as ĉ(i), representing the estimated cheapest path to the 

target node through the node i. The next node to be expanded is 
no longer based on the order of generation but rather the node 
with the minimum cost (for minimization cases). 

 

Fig 1.1 Branch and Bound Illustration for N-Queens Problem 

 Similarly to the greedy algorithm, the branch and bound 
algorithm can incorporates heuristics to guide its search 
through the solution space. Heuristic estimates are used to 
evaluate potential future outcomes and prune suboptimal 
branches. If a branch's heuristic score is worse than the current 
best-known solution, that branch is pruned. This method 
aiming to find better solutions than greedy algorithms alone by 
considering the long-term impact of each move. 

 

D. Computational Complexity 

 The computational complexity of a problem refers to the 
amount of computational resources required to solve it. 
Problems are often classified based on their complexity class, 
with NP-hard problems being among the most challenging. A 
problem is considered NP-hard if it is at least as hard as the 
hardest problems in NP (nondeterministic polynomial time) in 
terms of computational resources required for their solution. 
Tetris is classified as NP-hard due to its inherent complexity 
and the difficulty of finding an optimal solution within a 
reasonable amount of time using exact algorithms. 

 

E. Tetris 

 Tetris is a classic puzzle game where players manipulate 
falling tetrominoes—geometric shapes composed of four 
square blocks each. The goal is to place these tetrominoes in 
such a way that they form complete horizontal lines, which 
then disappear, preventing the stack of pieces from reaching 
the top of the playing field.  

 

Fig 1.1 Tetriminoes 
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 The tetrimino is as below :  

1. I-Tetrimino: Consists of four squares arranged in a 
straight line. 

2. J-Tetrimino: Comprises three squares forming an L-
shape with one additional square separated and 
positioned below the L-shape. 

3. L-Tetrimino: Comprises three squares forming an L-
shape with one additional square separated and 
positioned above the L-shape. 

4. O-Tetrimino: Comprises four squares arranged in a 
square shape. 

5. S-Tetrimino: Consists of two pairs of squares forming 
a Z-shape when rotated. 

6. T-Tetrimino: Consists of three squares forming a T-
shape with one additional square positioned below the 
T-shape. 

7. Z-Tetrimino: Consists of two pairs of squares forming 
an S-shape when rotated. 

 

 The complexity of Tetris arises from the randomness of 
incoming pieces and the need for strategic placement to 
maximize line clears and minimize gaps. Tetris is proven to be 
NP-hard, meaning that finding the optimal sequence of moves 
for an arbitrary sequence of tetrominoes is computationally 
infeasible in a reasonable amount of time. This complexity is 
due to the exponential growth of the search space with each 
additional piece, making it impossible to solve perfectly in 
real-time using exact algorithms. 

 

III. IMPLEMENTATION 

A. Tetris As NP-hard Problem 

 In Tetris, the objective is to manipulate a sequence of 

tetrominoes (Tetris pieces) falling down a grid to form 

complete rows without gaps. As the game progresses, the 

speed of falling tetrominoes increases, and players must make 

quick decisions to place them optimally. 

Tetris can be modeled as a combinatorial 

optimization problem, where the goal is to maximize the 

number of lines cleared while minimizing the number of 

moves made. The complexity of Tetris arises from the vast 

number of possible configurations of tetrominoes and the 

constraints imposed by the game rules. 

Tetris can be proven NP-hard by reducing it to the 3-

partition problem he reduction from the 3-partition problem to 

Tetris involves encoding instances of the 3-partition problem 

into Tetris configurations.  

 
Fig 3.1 The reduced initial state of Tetris board 

 Its dimension is as follows :  

- R is the space needed to rotate and translate 

the pieces. We consider Rto be big enough 

to rotate and translate Tetris pieces above 

the ‘buckets’ and therefore Ris of no 

consequence to the reduction. 

- W is the width of the game board and is 

equal to 4s+ 6. 

- H is the height of the bottom part of the 

game board that needs to be cleared and is 

equal to 5T+ 1 

Tetris game board can be construct with special 

features that correspond to the properties of the 3-partition 

problem. By simulating the gameplay of Tetris on this 

specially constructed board, it is shown that finding an optimal 

solution for Tetris is at least as hard as solving the 3-partition 

problem.  

 

The complexity of Tetris stems from the following 

factors: 

1. The exponential number of possible configurations of 

tetrominoes. 

2. The constraints imposed by the Tetris game rules, 

such as the requirement to form complete rows 

without gaps. 

3. The need to make decisions quickly as the game 

progresses, adding a time dimension to the problem. 

Due to its NP-hardness, finding an optimal solution to 

Tetris is computationally challenging and often requires 

heuristic algorithms or approximation methods to find near-

optimal solutions efficiently. 
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B, Greedy Algorithm 

Tetromino placement problem in the game of Tetris into 

the framework of a greedy algorithm defined as follows: 

1. Candidate Set (C): This set contains all possible 

positions available on the game board to place the 

Tetromino at each step. 

2. Solution Set (S): This set consists of the potential 

solutions from Tetromino placements. Each solution 

is a complete arrangement of Tetrominoes that cannot 

be placed further. 

3. Solution Function: A function that determines 

whether a Tetromino arrangement on the game board 

is the final solution or not. The solution is achieved 

when there are no more Tetrominoes that can be 

placed on the game board. 

4. Selection Function: At each step, this function selects 

the best position to place the Tetromino based on 

certain criteria, such as trying to cover gaps or 

approaching the upper boundary. 

5. Feasibility Function: This function checks if the 

selected position to place the Tetromino meets certain 

conditions, such as not causing unfilled gaps or 

exceeding the upper boundary of the game board. 

6. Objective Function: This function aims to maximize 

the score gained. 

 

With this, we can propose several greedy solutions. The 

solution is based on heuristic approaches. Every solution 

has its own drawbacks: 

 

1. Height-based Placement: The greedy algorithm can 

choose positions to place the Tetromino based on the 

highest block height in the associated column. This 

aims to keep the game board relatively flat and 

minimize the likelihood of creating gaps. But, this 

solution ignore the combo score that can give much 

more big result.  

 

2. Gap-based Placement: The algorithm can also select 

positions that have the potential to cover existing 

gaps on the game board. This way, we can reduce the 

likelihood of creating hard-to-fill gaps in subsequent 

steps. 

 

3. Tetromino Priority Placement: The algorithm can 

prioritize placing certain Tetrominoes first, such as 

those that are more difficult to place or have more 

advantageous shapes. 

 

With various possible greedy solutions, combinations of 

the above approaches or other variations can be used to 

develop an efficient Tetromino placement algorithm in the 

game of Tetris. 

 

C. Branch and Bound Algorithm 

Representation of Basic Tetris Gameplay System in Branch 
and Bound Algorithm 

In the context of the Branch and Bound Algorithm, a set of 
characteristics is outlined as follows: 

1. Live Node Identification (Simpul Hidup Sebagai 
Simpul-E): A live node refers to a node with the 
lowest cost value (least cost search). 

2. Cost Evaluation for Each Node: The evaluation of 
cost for each node considers specific factors: 

o Lines cleared 

o Number of holes 

o Maximum height 

o Average height 

In the Tetromino positioning challenge, lines cleared are 
maximized while the rest is minimized. Considering maximum 
height is really needed to keep low to keep the game and 
number of holes is not easy to clear, those factor have the most 
weight. Average weight sometimes is not good but sometimes 
needed to make combo. Same with lines cleared. Therefore, the 
estimated cost value for node iii is defined as:  

ĉ(i) = -0.5 * lines cleared + 1 * number of holes + 1 * 
maximum height + 0.5 * average height 

 

Temporary Lowest Cost Value (cmin ): The temporary 
lowest cost value encountered thus far is represented as cmin. 

Bounding Function (B(i)): The bounding function at each 
node iii is specified as follows: B(i)=  maximum block height ≤ 
20. 

Solution Node Identification: A solution node is identified 
post the placement of all available Tetrominos. 

To implement the Branch and Bound Algorithm for 
Tetromino placement optimization, the following steps are 
undertaken: 

1. Queue Initialization and Initial Node Insertion: Creation 
of a priority queue, such as Q, with the root node representing 
the initial Tetromino. If there's only one Tetromino, solution 
(goal node) attainment is concluded. 

2. Queue Processing and Node Expansion: Looping 
through the queue Q until exhaustion. Selection of the node iii 
with the smallest estimated cost value c ̂(𝑖) from queue Q. If the 
queue is empty, designate the node with cost value cmin  as the 
goal node. 

3. Node Evaluation and Bounding Function Scrutiny: 
Evaluation of whether node iii is a solution node, along with 
scrutiny of the bounding function. If B(i) is true, mark node 
persistence as the temporary goal node while terminating other 
nodes with estimated cost value ĉ(i) > cmin 
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Through these steps, we indirectly create the problem status 
space tree for Tetromino placement using the branch and 
bound algorithm. An example  is represented below :  

 

 

 

IV. Conclusion  

This paper explored the application of heuristic 

algorithms to address the NP-hard complexity inherent in the 

game of Tetris. By leveraging heuristic approaches such as 

greedy algorithms and branch and bound methods, we aimed to 

efficiently manage the computational demands of Tetris 

gameplay. 

Through the implementation of various heuristic strategies 

focused on minimizing gaps and maximizing completed rows, 

we evaluated the effectiveness of these approaches through 

extensive simulations and performance metrics. Our findings 

demonstrated significant improvements in decision-making 

speed and game performance, highlighting the practical utility 

of heuristic algorithms in handling the computational 

complexity of Tetris. 

The results suggest that heuristic approaches offer a 

practical solution for managing the computational demands of 

Tetris gameplay, providing insights that can be extended to 

other NP-hard problems in combinatorial optimization. By 

combining insights from computational complexity theory with 

heuristic algorithm design, we bridge theoretical concepts with 

practical applications, paving the way for advancements in 

both computer science and gaming. 

In conclusion, the utilization of heuristic approaches, 

including greedy algorithms and branch and bound methods, 

represents a promising avenue for addressing the NP-hard 

complexity of Tetris and similar combinatorial optimization 

problems. Moving forward, further research and development 

in heuristic algorithms hold the potential to unlock new 

strategies and insights for enhancing gameplay experiences and 

tackling computational challenges in gaming and beyond. 
 

V. Recommendations 

 The author recommend the creation of more sophisticated 
heuristic algorithms, focusing on the development of hybrid 
approaches that combine multiple heuristic techniques. 
Through such an approach, we believe that the efficiency and 
performance of Tetris gameplay can be significantly enhanced. 
Additionally, we suggest implementing heuristic algorithms in 
real-time Tetris game scenarios to unveil deeper insights into 
the effectiveness of heuristic algorithms in facing dynamic and 
unpredictable gaming environments. Furthermore, an analysis 
of user experience could provide a better understanding of the 
impact of heuristic-based optimization on player enjoyment 
and satisfaction. Further study of alternative heuristic criteria, 
such as Tetromino shape complexity or future piece prediction, 
is also advised to identify additional opportunities for 
enhancing Tetris gameplay optimization. Lastly, we encourage 
extending this research to other puzzle games or problem-

solving domains with NP-hard complexity, which could 
broaden the scope of study and provide new insights into 
heuristic optimization techniques. 
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