
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Utilizing Heuristic Approach to Tackle NP-Hard

Complexity in Tetris

Berto Richardo Togatorop - 13522118

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): bertotogatorop27@gmail.com

Abstract— Tetris, a widely popular puzzle game, presents a

computational challenge classified as NP-hard, making it a

formidable problem for exact algorithms. This paper explores the

application of heuristic algorithms to efficiently manage the

complexity inherent in Tetris. We propose and implement

various heuristic strategies aimed at optimizing gameplay by

minimizing gaps and maximizing completed rows. The

effectiveness of these heuristics is evaluated through extensive

simulations and performance metrics, demonstrating significant

improvements in decision-making speed and game performance.

The result suggest that heuristic approaches offer a practical

solution to handling the computational demands of Tetris,

providing insights that can be extended to other NP-hard

problems in combinatorial optimization.

Keywords—Tetris, Heuristic Approach, NP-hard Problems,

Computational Complexity, Greedy Algorithm, Branch and Bound

I. INTRODUCTION (HEADING 1)

Tetris, a globally popular puzzle game, presents significant
computational challenges due to its NP-hard classification. The
game's complexity comes from the need to place randomly
shaped tetrominoes in an optimal way to clear lines and prevent
the stack from reaching the top of the playing field. With the
large number of possible game states and the exponential
growth of the search space with each new piece, solving Tetris
optimally in real-time is computationally infeasible with exact
algorithms.

To tackle this problem, heuristic approaches such as greedy
algorithms and branch and bound methods can be used. Greedy
algorithms make locally optimal decisions at each step, aiming
for immediate benefits. These algorithms are efficient and easy
to implement but may not always lead to the best overall
solution because they focus only on short-term gains.

Branch and bound algorithms, on the other hand, explore
all possible solutions more thoroughly by systematically
branching out possible moves and using bounds to prune
branches that are unlikely to lead to an optimal solution. This
method balances the need to explore different possibilities with
the need to find good solutions quickly.

In this paper, I explore the use of both greedy algorithms and

branch and bound methods to address the NP-hard complexity

of Tetris. I propose and implement various heuristic strategies

to improve the performance of these algorithms, focusing on

minimizing gaps, reducing the height of columns, and

maximizing the number of lines cleared. The effectiveness of

these strategies is evaluated through extensive simulations,

demonstrating their strengths and weaknesses in handling the

computational demands of Tetris.

By combining the strengths of greedy algorithms and

branch and bound techniques, this paper aims to offer practical

solutions for the Tetris problem.

II. FUNDAMENTAL THEOREM

A. Heuristic

In problem-solving, a heuristic is a technique or strategy
that uses practical methods to find solutions, especially when
faced with complex or difficult problems. Heuristics are often
employed in situations where finding an optimal solution is
computationally infeasible within a reasonable amount of time.
In the context of Tetris, heuristics guide the decision-making
process by providing rules of thumb to optimize gameplay.
These rules prioritize certain actions, such as minimizing gaps,
reducing the height of the stack, or maximizing the number of
lines cleared, without guaranteeing an optimal solution. This
heuristic approach will affect the behavior of the algorithm
using it.

B. Greedy Algorithm

Greedy algorithms are a class of heuristic algorithms that
make locally optimal choices at each step with the hope of
finding a global optimum.

The Greedy Algorithm uses several elements to determine
its steps:

1. Candidate set, C: Contains options that can be chosen
at each step.

2. Solution set, S: Contains options that have been
chosen.

3. Solution function: Determines whether the chosen
option provides a solution.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

4. Selection function: Selects options based on a specific
strategy.

5. Feasibility function: Checks whether the chosen
option is suitable for inclusion in the solution set.

6. Objective function: Maximizes or minimizes the
outcome.

At each iteration, the solution found is the best at the local
level. In the end, if any, the global solution will be found.

The greedy algorithm in Tetris uses heuristics to determine
the selection function to make locally optimal decisions at each
step. These decisions are influenced by heuristic functions that
prioritize immediate benefits, such as clearing the most lines or
minimizing the height of the tallest column. While the greedy
algorithm is efficient and straightforward, its reliance on
heuristics may lead to suboptimal solutions in the long run.

C. Branch and Bound Algorithm

 Branch and bound is an algorithmic technique used for
solving combinatorial optimization problems. This method
systematically explores the solution space by branching into
subproblems and using bounds to eliminate suboptimal
branches.

The Branch and Bound Algorithm (BnB) is a versatile
algorithm used to solve optimization problems. These problems
involve finding the minimum or maximum value of an
objective function while adhering to certain constraints.
Typically, problems tackled using the Branch and Bound
Algorithm are represented as a graph or tree structure. The
process of searching for the optimal value is conducted using a
state space tree, where each node carries a specific weight.

In essence, the Branch and Bound Algorithm consists of
two main components:

a. The algorithm generates child nodes in the state space
tree from the node being examined. Each child node inherits
certain variations from its parent node and also carries a weight
representing the cost required to reach the child node from the
original node. This process is known as branching.

b. The algorithm prunes branches or nodes deemed to no
longer lead to the desired solution. This pruning is achieved
using a bounding function, hence the term "bounding."

The Branch and Bound Algorithm combines elements from
Breadth First Search (BFS) and Least Cost Search. BFS is a
search algorithm in the state space tree that generates child
nodes in a "breadth-first" manner, exploring all neighboring
nodes in a sequential order. BFS uses a queue data structure to
store nodes being generated with the First In First Out (FIFO)
principle. Least Cost Search involves generating child nodes
from a parent node with the smallest weight in the state space
tree.

In the Branch and Bound Algorithm, node generation
follows specific rules, with the best-first rule being commonly
used. Each generated node is assigned a cost or weight,
denoted as ĉ(i), representing the estimated cheapest path to the

target node through the node i. The next node to be expanded is
no longer based on the order of generation but rather the node
with the minimum cost (for minimization cases).

Fig 1.1 Branch and Bound Illustration for N-Queens Problem

 Similarly to the greedy algorithm, the branch and bound
algorithm can incorporates heuristics to guide its search
through the solution space. Heuristic estimates are used to
evaluate potential future outcomes and prune suboptimal
branches. If a branch's heuristic score is worse than the current
best-known solution, that branch is pruned. This method
aiming to find better solutions than greedy algorithms alone by
considering the long-term impact of each move.

D. Computational Complexity

 The computational complexity of a problem refers to the
amount of computational resources required to solve it.
Problems are often classified based on their complexity class,
with NP-hard problems being among the most challenging. A
problem is considered NP-hard if it is at least as hard as the
hardest problems in NP (nondeterministic polynomial time) in
terms of computational resources required for their solution.
Tetris is classified as NP-hard due to its inherent complexity
and the difficulty of finding an optimal solution within a
reasonable amount of time using exact algorithms.

E. Tetris

 Tetris is a classic puzzle game where players manipulate
falling tetrominoes—geometric shapes composed of four
square blocks each. The goal is to place these tetrominoes in
such a way that they form complete horizontal lines, which
then disappear, preventing the stack of pieces from reaching
the top of the playing field.

Fig 1.1 Tetriminoes

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 The tetrimino is as below :

1. I-Tetrimino: Consists of four squares arranged in a
straight line.

2. J-Tetrimino: Comprises three squares forming an L-
shape with one additional square separated and
positioned below the L-shape.

3. L-Tetrimino: Comprises three squares forming an L-
shape with one additional square separated and
positioned above the L-shape.

4. O-Tetrimino: Comprises four squares arranged in a
square shape.

5. S-Tetrimino: Consists of two pairs of squares forming
a Z-shape when rotated.

6. T-Tetrimino: Consists of three squares forming a T-
shape with one additional square positioned below the
T-shape.

7. Z-Tetrimino: Consists of two pairs of squares forming
an S-shape when rotated.

 The complexity of Tetris arises from the randomness of
incoming pieces and the need for strategic placement to
maximize line clears and minimize gaps. Tetris is proven to be
NP-hard, meaning that finding the optimal sequence of moves
for an arbitrary sequence of tetrominoes is computationally
infeasible in a reasonable amount of time. This complexity is
due to the exponential growth of the search space with each
additional piece, making it impossible to solve perfectly in
real-time using exact algorithms.

III. IMPLEMENTATION

A. Tetris As NP-hard Problem

 In Tetris, the objective is to manipulate a sequence of

tetrominoes (Tetris pieces) falling down a grid to form

complete rows without gaps. As the game progresses, the

speed of falling tetrominoes increases, and players must make

quick decisions to place them optimally.

Tetris can be modeled as a combinatorial

optimization problem, where the goal is to maximize the

number of lines cleared while minimizing the number of

moves made. The complexity of Tetris arises from the vast

number of possible configurations of tetrominoes and the

constraints imposed by the game rules.

Tetris can be proven NP-hard by reducing it to the 3-

partition problem he reduction from the 3-partition problem to

Tetris involves encoding instances of the 3-partition problem

into Tetris configurations.

Fig 3.1 The reduced initial state of Tetris board

 Its dimension is as follows :

- R is the space needed to rotate and translate

the pieces. We consider Rto be big enough

to rotate and translate Tetris pieces above

the ‘buckets’ and therefore Ris of no

consequence to the reduction.

- W is the width of the game board and is

equal to 4s+ 6.

- H is the height of the bottom part of the

game board that needs to be cleared and is

equal to 5T+ 1

Tetris game board can be construct with special

features that correspond to the properties of the 3-partition

problem. By simulating the gameplay of Tetris on this

specially constructed board, it is shown that finding an optimal

solution for Tetris is at least as hard as solving the 3-partition

problem.

The complexity of Tetris stems from the following

factors:

1. The exponential number of possible configurations of

tetrominoes.

2. The constraints imposed by the Tetris game rules,

such as the requirement to form complete rows

without gaps.

3. The need to make decisions quickly as the game

progresses, adding a time dimension to the problem.

Due to its NP-hardness, finding an optimal solution to

Tetris is computationally challenging and often requires

heuristic algorithms or approximation methods to find near-

optimal solutions efficiently.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B, Greedy Algorithm

Tetromino placement problem in the game of Tetris into

the framework of a greedy algorithm defined as follows:

1. Candidate Set (C): This set contains all possible

positions available on the game board to place the

Tetromino at each step.

2. Solution Set (S): This set consists of the potential

solutions from Tetromino placements. Each solution

is a complete arrangement of Tetrominoes that cannot

be placed further.

3. Solution Function: A function that determines

whether a Tetromino arrangement on the game board

is the final solution or not. The solution is achieved

when there are no more Tetrominoes that can be

placed on the game board.

4. Selection Function: At each step, this function selects

the best position to place the Tetromino based on

certain criteria, such as trying to cover gaps or

approaching the upper boundary.

5. Feasibility Function: This function checks if the

selected position to place the Tetromino meets certain

conditions, such as not causing unfilled gaps or

exceeding the upper boundary of the game board.

6. Objective Function: This function aims to maximize

the score gained.

With this, we can propose several greedy solutions. The

solution is based on heuristic approaches. Every solution

has its own drawbacks:

1. Height-based Placement: The greedy algorithm can

choose positions to place the Tetromino based on the

highest block height in the associated column. This

aims to keep the game board relatively flat and

minimize the likelihood of creating gaps. But, this

solution ignore the combo score that can give much

more big result.

2. Gap-based Placement: The algorithm can also select

positions that have the potential to cover existing

gaps on the game board. This way, we can reduce the

likelihood of creating hard-to-fill gaps in subsequent

steps.

3. Tetromino Priority Placement: The algorithm can

prioritize placing certain Tetrominoes first, such as

those that are more difficult to place or have more

advantageous shapes.

With various possible greedy solutions, combinations of

the above approaches or other variations can be used to

develop an efficient Tetromino placement algorithm in the

game of Tetris.

C. Branch and Bound Algorithm

Representation of Basic Tetris Gameplay System in Branch
and Bound Algorithm

In the context of the Branch and Bound Algorithm, a set of
characteristics is outlined as follows:

1. Live Node Identification (Simpul Hidup Sebagai
Simpul-E): A live node refers to a node with the
lowest cost value (least cost search).

2. Cost Evaluation for Each Node: The evaluation of
cost for each node considers specific factors:

o Lines cleared

o Number of holes

o Maximum height

o Average height

In the Tetromino positioning challenge, lines cleared are
maximized while the rest is minimized. Considering maximum
height is really needed to keep low to keep the game and
number of holes is not easy to clear, those factor have the most
weight. Average weight sometimes is not good but sometimes
needed to make combo. Same with lines cleared. Therefore, the
estimated cost value for node iii is defined as:

ĉ(i) = -0.5 * lines cleared + 1 * number of holes + 1 *
maximum height + 0.5 * average height

Temporary Lowest Cost Value (cmin): The temporary
lowest cost value encountered thus far is represented as cmin.

Bounding Function (B(i)): The bounding function at each
node iii is specified as follows: B(i)= maximum block height ≤
20.

Solution Node Identification: A solution node is identified
post the placement of all available Tetrominos.

To implement the Branch and Bound Algorithm for
Tetromino placement optimization, the following steps are
undertaken:

1. Queue Initialization and Initial Node Insertion: Creation
of a priority queue, such as Q, with the root node representing
the initial Tetromino. If there's only one Tetromino, solution
(goal node) attainment is concluded.

2. Queue Processing and Node Expansion: Looping
through the queue Q until exhaustion. Selection of the node iii
with the smallest estimated cost value c ̂(𝑖) from queue Q. If the
queue is empty, designate the node with cost value cmin as the
goal node.

3. Node Evaluation and Bounding Function Scrutiny:
Evaluation of whether node iii is a solution node, along with
scrutiny of the bounding function. If B(i) is true, mark node
persistence as the temporary goal node while terminating other
nodes with estimated cost value ĉ(i) > cmin

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Through these steps, we indirectly create the problem status
space tree for Tetromino placement using the branch and
bound algorithm. An example is represented below :

IV. Conclusion

This paper explored the application of heuristic

algorithms to address the NP-hard complexity inherent in the

game of Tetris. By leveraging heuristic approaches such as

greedy algorithms and branch and bound methods, we aimed to

efficiently manage the computational demands of Tetris

gameplay.

Through the implementation of various heuristic strategies

focused on minimizing gaps and maximizing completed rows,

we evaluated the effectiveness of these approaches through

extensive simulations and performance metrics. Our findings

demonstrated significant improvements in decision-making

speed and game performance, highlighting the practical utility

of heuristic algorithms in handling the computational

complexity of Tetris.

The results suggest that heuristic approaches offer a

practical solution for managing the computational demands of

Tetris gameplay, providing insights that can be extended to

other NP-hard problems in combinatorial optimization. By

combining insights from computational complexity theory with

heuristic algorithm design, we bridge theoretical concepts with

practical applications, paving the way for advancements in

both computer science and gaming.

In conclusion, the utilization of heuristic approaches,

including greedy algorithms and branch and bound methods,

represents a promising avenue for addressing the NP-hard

complexity of Tetris and similar combinatorial optimization

problems. Moving forward, further research and development

in heuristic algorithms hold the potential to unlock new

strategies and insights for enhancing gameplay experiences and

tackling computational challenges in gaming and beyond.

V. Recommendations

 The author recommend the creation of more sophisticated
heuristic algorithms, focusing on the development of hybrid
approaches that combine multiple heuristic techniques.
Through such an approach, we believe that the efficiency and
performance of Tetris gameplay can be significantly enhanced.
Additionally, we suggest implementing heuristic algorithms in
real-time Tetris game scenarios to unveil deeper insights into
the effectiveness of heuristic algorithms in facing dynamic and
unpredictable gaming environments. Furthermore, an analysis
of user experience could provide a better understanding of the
impact of heuristic-based optimization on player enjoyment
and satisfaction. Further study of alternative heuristic criteria,
such as Tetromino shape complexity or future piece prediction,
is also advised to identify additional opportunities for
enhancing Tetris gameplay optimization. Lastly, we encourage
extending this research to other puzzle games or problem-

solving domains with NP-hard complexity, which could
broaden the scope of study and provide new insights into
heuristic optimization techniques.

ACKNOWLEDGMENT

The author extends heartfelt gratitude to the

Almighty for His grace and blessings, without which the

completion of this paper would not have been possible. The

author acknowledges that divine guidance and blessings were

essential for achieving the desired outcomes of this endeavor.

Furthermore, the author expresses deepest

appreciation to their beloved parents for their unwavering

support throughout the process of writing this paper. Their

moral, material, and spiritual encouragement have been

invaluable and deeply cherished.

The author also wishes to convey profound gratitude

to the instructors of the IF2211 course and other academic

mentors for their guidance, knowledge, and direction

throughout the academic journey. Their expertise and insights

have significantly contributed to the development and

understanding of this paper.

Lastly, the author thanks all individuals, friends, and

colleagues who have directly or indirectly supported this work

through discussions, feedback, or encouragement. Their

contributions have been instrumental and greatly appreciated.

REFERENCES

For papers published in translation journals, please give the
English citation first, followed by the original foreign-language
citation [6].

[1] R. Munir, “Algoritma Greedy Bagian 1,” IF2211 Strategi Algoritma.
Retrieved:May 30, 2024, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag1.pdf

[2] R. Munir, “Algoritma Greedy Bagian 2,” IF2211 Strategi Algoritma.
Retrieved:May 30, 2024, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag2.pdf

[3] R. Munir, “Algoritma Greedy Bagian 3,” IF2211 Strategi Algoritma.
Retrieved:May 30, 2024, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag3.pdf

[4] R. Munir, “Algoritma Branch and Bound Bagian 1,” IF2211 Strategi
Algoritma. Retrieved:May 30, 2024, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag1.pdf

[5] R. Munir, “Algoritma Branch and Bound Bagian 2,” IF2211 Strategi
Algoritma. Retrieved:May 30, 2024, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag2.pdf

[6] R. Munir, “Algoritma Branch and Bound Bagian 3,” IF2211 Strategi
Algoritma. Retrieved:May 30, 2024, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag3.pdf

[7] Demaine, Erik D.; Hohenberger, Susan; Liben-Nowell, David (July 25–
28, 2003). Tetris is Hard, Even to Approximate.

[8] R. Breukelaar, H. J. Hoogeboom, and W. A. Kosters. Tetris is hard,
made easy. Technical report, Leiden Institute of Advanced Computer
Science, 2003.

[9] J. Brzustowski. Can you win at Tetris? Master’s thesis, U. British
Columbia, 1992

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Berto Richardo Togatorop - 13522118

